Share this post on:

ay excitation by shaping synaptic transmission. Nat Rev Neurosci 8: 935947. Hertz L, Peng L, Dienel GA Energy metabolism in astrocytes: high rate of oxidative metabolism and spatiotemporal dependence on glycolysis/glycogenolysis. J Cereb Blood Flow Metab 27: 219249. Yudkoff M, Nelson D, Daikhin Y, Erecinska M Tricarboxylic acid cycle in rat brain synaptosomes. Fluxes and interactions with aspartate aminotransferase and malate/aspartate shuttle. J Biol Chem 269: 2741427420. Pisarenko OI, Solomatina ES, Ivanov VE, Studneva IM, Kapelko VI, et al. On the mechanism of enhanced ATP formation in hypoxic myocardium caused by glutamic acid. Basic Res Cardiol 80: 126134. Palmieri F The mitochondrial transporter family: physiological and pathological implications. Pflugers Arch 447: 689709. Satrustegui J, Pardo B, Del Arco A Mitochondrial transporters as novel targets for intracellular calcium signaling. Physiol Rev 87: 2967. Ralphe JC, Bedell K, Segar JL, Scholz TD Correlation ” between myocardial malate/aspartate shuttle activity and EAAT1 protein expression in hyper- and hypothyroidism. Am J Physiol Heart Circ Physiol 288: H25212526. Ralphe JC, Segar JL, Schutte BC, Scholz TD Localization and function of the brain excitatory amino acid transporter type 1 in cardiac mitochondria. J Mol Cell Cardiol 37: 3341. Castaldo P, Cataldi M, Magi S, Lariccia V, Arcangeli S, et al. Role of the mitochondrial sodium/calcium order BIRB-796 exchanger in neuronal physiology and in the pathogenesis of neurological diseases. Prog Neurobiol 87: 5879. Gobbi P, Castaldo P, Minelli A, Salucci S, Magi S, et al. Mitochondrial localization of Na+/Ca2+ exchangers NCX13 in neurons and astrocytes of adult rat brain in situ. Pharmacol Res 56: 556565. Minelli A, Castaldo P, Gobbi P, Salucci S, Magi S, et al. Cellular and subcellular localization of Na+-Ca2+ exchanger protein isoforms, NCX1, NCX2, and NCX3 in cerebral cortex and hippocampus of adult rat. Cell Calcium 41: 221234. Blaustein MP, Lederer WJ Sodium/calcium exchange: its physiological implications. Physiol Rev 79: 763854. ” Santo-Domingo J, Demaurex N Calcium uptake mechanisms of mitochondria. Biochim Biophys Acta 1797: 907912. Smets I, Caplanusi A, Despa S, Molnar Z, Radu M, et al. Ca2+ uptake in mitochondria occurs via the reverse action of the Na+/Ca2+ exchanger in metabolically inhibited MDCK cells. Am J Physiol Renal Physiol 286: F784794. Cervos-Navarro J, Diemer NH Selective vulnerability in brain hypoxia. Crit Rev Neurobiol 6: 149182. Amoroso S, Schmid-Antomarchi H, Fosset M, Lazdunski M Glucose, sulfonylureas, and neurotransmitter release: role of ATP-sensitive K+ channels. Science 247: 852854. 30. Hirrlinger J, Dringen R The cytosolic redox state of astrocytes: Maintenance, regulation and functional implications for metabolite trafficking. Brain Res Rev 63: 177188. 31. Kanai Y, Smith CP, Hediger MA A new family of neurotransmitter transporters: the high-affinity glutamate transporters. FASEB J 7: 14501459. 32. del Arco A, Satrustegui J Molecular cloning of Aralar, a new member of the mitochondrial carrier superfamily that binds calcium and is present in human muscle and brain. J Biol Chem 273: 2332723334. 33. Anderson CM, Bridges RJ, Chamberlin AR, Shimamoto K, YasudaKamatani Y, et al. Differing effects of substrate and non-substrate transport inhibitors on glutamate uptake reversal. J Neurochem 79: 12071216. 34. Montiel T, Camacho A, Estrada-Sanchez AM, Massieu L Differential effects of the substrate inhibitor l-trans-pyrrol

Share this post on: